2018

STATISTICS-HONOURS

Third Paper

Group - B

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Section - I

Answer any two from question nos. 1-4 and any one from question nos. 5 and 6

- 1. Distinguish clearly between theoretical distributions and smapling distributions citing examples of each.
- 2. If X_1 , X_2 and X_3 are i.i.d. N(0, 1), find the distribution of $[(X_1 + X_2)^2 + 2 X_3^2] / [X_1 X_2]^2.$

(proofs of intermediate results are not necessary)

-

- 3. If X_1 and X_2 are independent and follow exponential distributions with same mean λ , find the distribution of $X_1/(X_1+X_2)$.
- 4. If $X_1,...,X_n$ is a sample from a population defined by the p.d.f. f(x), find the joint distribution of min $\{X_i\}$ and max $\{X_i\}$.
- 5. For a sample of size n from a $N(\mu, \sigma^2)$ population, let X and s^2 be the sample mean and sample variance (with divisor n-1) respectively.
 - (a) Find the joint distribution $f(X, s^2)$.
 - (b) Show that this equals the product of g(X) and h(s²), where g(.) and h(.) are respectively the marginal distributions of X and s².
 - (c) Hence find the form of the distribution f(u), where $u = n^{1/2} (X \mu)/s$.
 - (d) What will be the distribution of u²?

5+2+6+2

6. (a) Given a sample of size n from N_2 (μ_1 , μ_2 , σ_1^2 , σ_2^2 , ρ), find the distribution of $Q = (1-\rho^2)^{-1} \left[s_1^2/\sigma_1^2 - 2 \ s_{12}/\sigma_1 \ \sigma_2 + \ s_2^2/\sigma_2^2 \right]$

where s_1^2 and s_2^2 are the two sample variances and s_{12} is the sample covariance.

(b) If the errors of a simple linear regression model are i.i.d. N (0, σ^2), derive the distributions of the intercept, the slope and the residual variance as estimated from a sample of size n. 6+9

Please Turn Over

Section - II

Answer any two from question nos. 7-10 and any one from question nos. 11 and 12.

- Let T₁ and T₂ be two unbiased estimators of θ having the same variance. Find a lower bound to their correlation coefficient in terms of their efficiency.
- 8. Using a sample of size n, find the method of moment estimators of α and p of a Gamma G (α, p) distribution.
- In a library there are N (known) books of which M (unknown) are in English and the rest (N m) in Vernacular. To estimate M, n books are chosen at random without replacement of which x turns out to be in English. Find the maximum likelihood estimator of M.
- 10. In reporting an interval estimate of the mean μ of a normal distribution, a statistician quotes

$$P[55.5 \le \mu \le 82.5] = 0.95.$$

5

Is the statement correct? If not, how will you re-state it? -Discuss.

- 11. (a) In estimating the parameter θ, Statistician A suggests using the minimum variance unbiased estimator T_A while Statistician B suggests using the minimum mean-square-error estimator T_B. Which of the two will you prefer and why?
 - (b) State Cramer-Rao Inequality and discuss its implications.
 - (c) What implication does the Rao-Blackwell Theorem have in the context of minimum variance unbiased estimators?
 - (d) Let $f(x) = e^{-(x-\theta)}$ if $\theta < x < \infty$ and $\theta = 0$ otherwise.

If the Cramer-Rao inequality is applicable, find a lower bound of the variance of an unbiased estimator of θ .

- 12. Let $X_1,...,X_n$ be a random sample from a Rectangular $(0, \theta)$ distribution and let T_1 be the sample mean.
 - (a) Find the maximum likelihood estimator (T_2) of θ .
 - (b) Are T_1 and T_2 unbiased for θ ? If not, find unbiased estimators of θ based on each.
 - (c) Which of the two unbiased estimators will you prefer and why?
 - (d) Find the maximum likelihood estimator of θ if $X_1,...,X_n$ is a random sample from a Rectangular $(-\theta, \theta)$ distribution.